广度优先搜索
Binary Tree Level Order Traversal
递归
void levelOrderHelper(vector<vector<int>> &res, int level, TreeNode *root) {
if (root == NULL) return;
if (res.size() == level) res.push_back(vector<int>());
res[level].push_back(root->val);
levelOrderHelper(res, level + 1, root->left);
levelOrderHelper(res, level + 1, root->right);
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
levelOrderHelper(res, 0, root);
return res;
}
非递归,层序遍历,用queue保存当前层
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
if(root == nullptr) return res;
queue<TreeNode*> q;
q.push(root);
int count = 1; // 当前层的个数
vector<int> cur; // 当前层的vector
int next = 0; // 下一层的个数
while(!q.empty()){
TreeNode* temp = q.front();
cur.push_back(temp->val);
if(temp->left != nullptr){
next++;
q.push(temp->left);
}
if(temp->right != nullptr){
next++;
q.push(temp->right);
}
q.pop();
count--;
if(count == 0){
count = next;
next = 0;
res.push_back(cur);
cur.clear();// 清空vector
}
}
return res;
}
Binary Tree Zigzag Level Order Traversal
- 层序遍历,用一个标识表示是否从左开始
- 如果是从左开始,直接push_back
如果是从右开始,直接insert到第一个
vector<vector<int>> zigzagLevelOrder(TreeNode* root) { vector<vector<int>> res; if (root == nullptr) return res; queue<TreeNode*> q; q.push(root); int count = 1; vector<int> cur; int next = 0; bool left = true; while(!q.empty()){ TreeNode* temp = q.front(); if (left) cur.push_back(temp->val); else cur.insert(cur.begin(),temp->val); if(temp->left != nullptr){ next++; q.push(temp->left); } if(temp->right != nullptr){ next++; q.push(temp->right); } q.pop(); count--; if(count == 0){ // if(!left) reverse(cur.begin(),cur.end()); left = !left; count = next; next = 0; res.push_back(cur); cur.clear(); } } return res; }
Binary Tree Level Order Traversal II
层序遍历,最后直接翻转vector就可以了
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> res;
if(root == nullptr) return res;
queue<TreeNode*> q;
vector<int> cur;
q.push(root);
int count = 1;
int next = 0;
while(!q.empty()) {
TreeNode* temp = q.front();q.pop();
cur.push_back(temp->val);
if(temp->left){next++;q.push(temp->left);}
if(temp->right){next++;q.push(temp->right);}
count--;
if(count == 0){
count = next;
next = 0;
res.push_back(cur);
cur.clear();
}
}
reverse(res.begin(), res.end());
return res;
}
Minimum Depth of Binary Tree
递归求解,直接求左子树的高度,然后再求右子树的高度,两个取小的
int minDepth(TreeNode* root) {
if (root == nullptr) return 0;
if (root->left == nullptr && root->right == nullptr) return 1;
if (!root->left) return minDepth(root->right) + 1;
if (!root->right) return minDepth(root->left) + 1;
return min(minDepth(root->left),minDepth(root->right)) + 1;
}
Populating Next Right Pointers in Each Node
层序遍历
递归
Node* connect(Node* root) {
if(root == nullptr) return root;
root->next = nullptr;
connectHelper(root);
return root;
}
void connectHelper(Node* root) {
if(root == nullptr) return;
if (root->left && root->right) {
root->left->next = root->right;
}
if(root->next && root->right){
root->right->next = root->next->left;
}
connectHelper(root->left);
connectHelper(root->right);
}
非递归
Node* connect(Node* root) {
if (!root) return root;
Node* level = root;
while (level) {
Node* list = level;
while (list) {
if (list->left) {
list->left->next = list->right;
}
if (list->next && list->right) {
list->right->next = list->next->left;
}
list = list->next;
}
level = level->left;
}
return root;
}
Populating Next Right Pointers in Each Node II
递归 层序遍历做成递归形式
void solve(Node* node, int lvl, vector<Node*> &track){
if(node==NULL){
return;
}
solve(node->right,lvl+1,track);
solve(node->left,lvl+1,track);
if(track[lvl]==NULL){
track[lvl]=node;
}else{
node->next=track[lvl];
track[lvl]=node;
}
}
Node* connect(Node* root) {
vector<Node*> track(100000,NULL);
solve(root,0,track);
return root;
}
层序遍历,记录当前层的node,然后组成一个链表
Node* connect(Node* root) {
if(root == nullptr) return root;
queue<Node*> q;
q.push(root);
while(!q.empty()) {
int count = q.size();
Node* cur = q.front();q.pop();
if(cur->left != nullptr)q.push(cur->left);
if(cur->right != nullptr) q.push(cur->right);
while(count > 0){
if(count == 1) break;
Node* tmp = q.front();q.pop();
cur->next = tmp;
cur = tmp;
if(tmp->left != nullptr)q.push(tmp->left);
if(tmp->right != nullptr) q.push(tmp->right);
count--;
}
cur->next = nullptr;
}
return root;
}
Binary Tree Right Side View
层序遍历,压入最右边那个
vector<int> rightSideView(TreeNode* root) {
vector<int> ans;
if(!root) return ans;
queue<TreeNode*> q;
q.push(root);
while(!q.empty()) {
int size = q.size();
int value;
while(size--) {
TreeNode* node = q.front();
value = node->val;
q.pop();
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
ans.push_back(value);
}
return ans;
}
Number of Islands
用一个标记表示有没有访问过
int numIslands(vector<vector<char>>& grid) {
int res = 0;
int m = grid.size();
int n = m == 0 ? 0 : grid[0].size();
if (m == 0 || n == 0) {
return res;
}
bool visited[m][n];
for(int i = 0; i < m; ++i){
for(int j = 0; j < n; ++j){
visited[i][j] = false;
}
}
queue<int> q;
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
int x = 0, y = 0, xx = 0, yy = 0;
for(int i = 0; i < m; ++i) {
for(int j = 0; j < n; ++j) {
if(grid[i][j] == '1' && !visited[i][j]){
q.push(i);
q.push(j);
visited[i][j] = true;
res++;
while(!q.empty()) {
x = q.front(); q.pop();
y = q.front(); q.pop();
for(int k = 0; k < 4; k++){
xx = x + dx[k];
yy = y + dy[k];
if(xx < 0 || xx >= m || yy < 0 || yy >= n) continue;
if(grid[xx][yy] == '1' && !visited[xx][yy]){
q.push(xx);
q.push(yy);
visited[xx][yy] = true;
}
}
}
}
}
}
return res;
}
Average of Levels in Binary Tree
记录每一层的和,求平均值
vector<double> averageOfLevels(TreeNode* root) {
vector<double> res;
if(root == nullptr) return res;
queue<TreeNode*> q;
q.push(root);
while(!q.empty()) {
int n = q.size();
double sum = 0;
for(int i = 0; i < n; ++i) {
TreeNode* temp = q.front(); q.pop();
sum += temp->val;
if(temp->left != nullptr) q.push(temp->left);
if(temp->right != nullptr) q.push(temp->right);
}
res.push_back(sum / n);
}
return res;
}
All Nodes Distance K in Binary Tree
- 找到目标节点相对于当前节点的深度,然后分四种情况判断
- 如果当前节点就是目标节点,就再往下寻找k层即可
- 如果目标节点在当前节点的左分支,且深度为L,则只需要在当前节点的右边节点去寻找
K - L -1
深度即可 - 如果目标节点在当前节点的右分支,处理情况类似于左分支
如果当目标节点不在当前节点子分支下面,直接返回
vector<int> res; TreeNode* target; int K; vector<int> distanceK(TreeNode* root, TreeNode* target, int K) { this->target = target; this->K = K; dfs(root); return this->res; } // dfs int dfs(TreeNode* root) { if(root == nullptr) return -1; if(root == this->target){ subtree_helper(root, 0); return 1; } int l = dfs(root->left), r = dfs(root->right); if (l != -1) { if(l == K) this->res.push_back(root->val); subtree_helper(root->right, l + 1); return l + 1; } else if (r != -1) { if(r == K) this->res.push_back(root->val); subtree_helper(root->left, r + 1); return r + 1; } else { return -1; } } // 从节点出发,查找深度为 l - k - 1 的节点 void subtree_helper(TreeNode* root, int dist) { if(root == nullptr) return; if(dist == K){ this->res.push_back(root->val); } else { subtree_helper(root->left, dist + 1); subtree_helper(root->right, dist + 1); } }