深度优先搜索
Validate Binary Search Tree
递归
bool isValidBST(TreeNode* root) {
double lower = DBL_MIN;
double upper = DBL_MAX;
return helper(root, lower, upper);
}
bool helper(TreeNode* root, double lower, double upper) {
if(root == nullptr) return true;
int val = root->val;
if(lower != DBL_MIN && val <= lower) return false;
if(upper !=DBL_MAX && val >= upper) return false;
if(!helper(root->left, lower, val)) return false;
if(!helper(root->right, val, upper)) return false;
return true;
}
Same Tree
递归
bool isSameTree(TreeNode* p, TreeNode* q) {
if(p == nullptr && q == nullptr) return true;
if(p == nullptr || q == nullptr) return false;
if(p->val != q->val) return false;
return isSameTree(p->left,q->left) && isSameTree(p->right,q->right);
}
Maximum Depth of Binary Tree
int maxDepth(TreeNode* root) {
if(root == nullptr)
return 0;
int nleft = 0;
int nright = 0;
TreeNode *pRoot = root;
nleft += maxDepth(pRoot->left);
nright += maxDepth(pRoot->right);
return (nleft > nright ? nleft : nright) + 1 ;
}
Construct Binary Tree from Preorder and Inorder Traversal
就是重建树。要了解到前序遍历(中左右)和中序遍历(左中右)的特点
TreeNode* buildTree(vector<int>& pre, vector<int>& in) {
return helper(pre, 0, pre.size() - 1, in, 0, in.size() - 1);
}
TreeNode* helper(vector<int>& pre, int pleft, int pright, vector<int>& ino, int ileft, int iright) {
if(pleft > pright || ileft > iright) return nullptr;
TreeNode* p = new TreeNode(pre[pleft]);
if(pleft == pright) return p;
int index = ileft;
for(; index <= iright; index++) {
if(ino[index] == pre[pleft])break;
}
int n = index - ileft;
p->left = helper(pre, pleft + 1, pleft + n, ino, ileft, ileft + n - 1);
p->right = helper(pre, pleft + n + 1, pright, ino, ileft + n + 1, iright);
return p;
}
Path Sum
bool hasPathSum(TreeNode* root, int sum) {
if(root == nullptr) return false;
return helper(root, sum, 0);
}
bool helper(TreeNode* root, int sum, int temp) {
if(root == nullptr) return false;
temp += root->val;
if(temp == sum && !root->left && !root->right) return true;
return helper(root->left, sum, temp) || helper(root->right, sum, temp);
}
Path Sum II
vector<vector<int>> pathSum(TreeNode* root, int sum) {
vector<int> tv;
vector<vector<int>> res;
helper(root, sum, 0, 0, tv, res);
return res;
}
void helper(TreeNode* root, int sum, int temp,int len, vector<int>& tv, vector<vector<int>>& res) {
if(root == nullptr) return;
temp += root->val;
tv.push_back(root->val);
if(temp == sum && !root->left && !root->right){
res.push_back(tv);
}
helper(root->left, sum, temp, len + 1, tv, res);
while(tv.size() > len + 1){
tv.pop_back();
}
helper(root->right, sum, temp, len + 1, tv, res);
}
Binary Tree Maximum Path Sum
int res = INT_MIN;
int maxPathSum(TreeNode* root) {
helper(root);
return res;
}
int helper(TreeNode* root) {
if(root == nullptr) return 0;
int left = helper(root->left);
int right = helper(root->right);
res = max(res, root->val);
res = max(res, root->val + left);
res = max(res, root->val + right);
res = max(res, root->val + left + right);
return max(root->val, max(root->val + left,root->val + right));
}
Implement Trie (Prefix Tree)
class Trie {
public:
struct newTrie
{
char data;
unordered_map<char,newTrie*> child;
bool last;
newTrie(char c)
{
data=c;
last=false;
}
};
newTrie*root;
/** Initialize your data structure here. */
Trie()
{
root=new newTrie('\0');
}
/** Inserts a word into the trie. */
void insert(string word) {
newTrie *temp=root;
for(int i=0;i<word.length();i++)
{
if(temp->child.find(word[i])!=temp->child.end())
{
temp=temp->child[word[i]];
if(i==word.length()-1)
temp->last=true;
}
else
{
temp->child[word[i]]=new newTrie(word[i]);
temp=temp->child[word[i]];
if(i==word.length()-1)
temp->last=true;
}
}
}
//Returns if the word is in the trie.
//which is only possible when last character of word is in last node of one of branches of prefix tree
bool search(string word) {
newTrie *temp=root;
for(int i=0;i<word.length();i++)
{
if(temp->child.find(word[i])!=temp->child.end())
{
if(i!=word.length()-1)
temp=temp->child[word[i]];
else if(temp->child[word[i]]->last==true)
return true;
}
else
return false;
}
return false;
}
/** Returns if there is any word in the trie that starts with the given prefix. */
bool startsWith(string prefix) {
newTrie *temp=root;
for(int i=0;i<prefix.length();i++)
{
if(temp->child.find(prefix[i])!=temp->child.end())
{
temp=temp->child[prefix[i]];
}
else
return false;
}
return true;
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* bool param_2 = obj->search(word);
* bool param_3 = obj->startsWith(prefix);
*/
Word Search II
vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
vector<string> res;
for(int i = 0; i < words.size();i++){
if(helper(board,words[i]))res.push_back(words[i]);
}
return res;
}
bool helper(vector<vector<char>>& board, string word) {
for(int i = 0; i < board.size(); i++) {
for(int j = 0; j < board[0].size(); j++){
if(existedHelper(i,j,board,word,0)) return true;
}
}
return false;
}
bool existedHelper(int x, int y, vector<vector<char>>& board, string& word, int len) {
if(x < 0 || y < 0 || x >= board.size() || y >= board[0].size() || board[x][y] != word[len]) return false;
if(len == word.size() - 1) return true;
char t = board[x][y];
board[x][y] = '0';
bool exist = existedHelper(x - 1, y, board, word, len + 1) ||
existedHelper(x, y - 1, board, word, len + 1) ||
existedHelper(x + 1, y, board, word, len + 1) ||
existedHelper(x, y + 1, board, word, len + 1);
board[x][y] = t;
return exist;
}
Invert Binary Tree
TreeNode* invertTree(TreeNode* root) {
if(root == nullptr) return root;
swap(root->left, root->right);
invertTree(root->left);
invertTree(root->right);
return root;
}
Kth Smallest Element in a BST
int index = -1;
int res;
int kthSmallest(TreeNode* root, int k) {
helper(root,k);
return res;
}
void helper(TreeNode* root,int& k) {
if(root == nullptr) return;
helper(root->left,k);
index++;
if (index == k - 1) res = root->val;
else helper(root->right,k);
}
Lowest Common Ancestor of a Binary Search Tree
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == nullptr) return root;
int maxVal = max(p->val,q->val);
int minVal = min(p->val,q->val);
if(maxVal >= root->val && minVal <= root->val) return root;
else if(root->val > maxVal) return lowestCommonAncestor(root->left,p,q);
else return lowestCommonAncestor(root->right,p,q);
}
Lowest Common Ancestor of a Binary Tree
TreeNode* res = nullptr;
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
helper(root, p, q);
return res;
}
bool helper(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == nullptr) return false;
int left = helper(root->left,p,q) ? 1 : 0;
int right = helper(root->right, p,q) ? 1 : 0;
int mid = (root == p || root == q) ? 1 : 0;
if(left + right + mid >= 2){
res = root;
}
return left + mid + right > 0 ;
}
Serialize and Deserialize Binary Tree
// Encodes a tree to a single string.
string serialize(TreeNode* root) {
stringstream ss;
serializeHelper(ss, root);
return ss.str();
}
void serializeHelper(stringstream& ss, TreeNode* cur) {
if (!cur) {
ss << "# ";
return;
}
ss << cur->val << " ";
serializeHelper(ss, cur->left);
serializeHelper(ss, cur->right);
}
// Decodes your encoded data to tree.
TreeNode* deserialize(string data) {
stringstream ss(data);
TreeNode* root = nullptr;
deserializeHelper(ss, root);
return root;
}
void deserializeHelper(stringstream& ss, TreeNode* &cur) {
string node;
ss >> node;
if (node == "" || node == "#") {
cur = nullptr;
return;
}
stringstream sss(node);
int data;
sss >> data;
cur = new TreeNode();
cur->val = data;
cur->left = cur->right = nullptr;
deserializeHelper(ss, cur->left);
deserializeHelper(ss, cur->right);
}
Path Sum III
int pathSum(TreeNode* root, int sum) {
if(root == nullptr) return 0;
return helper(root, sum) + pathSum(root->left, sum) + pathSum(root->right, sum);
}
int helper(TreeNode* root, int sum) {
if(root == nullptr) return 0;
int left = helper(root->left, sum - root->val);
int right = helper(root->right, sum - root->val);
return sum == root->val ? left + right + 1 : left + right;
}
Diameter of Binary Tree
int diameterOfBinaryTree(TreeNode* root) {
depth = 1;
helper(root);
return depth - 1;
}
int depth = 0;
int helper(TreeNode* root){
if(root == nullptr) return 0;
int left = helper(root->left);
int right = helper(root->right);
depth = max(depth, left + right + 1);
return max(left, right) + 1;
}
Subtree of Another Tree
bool isSubtree(TreeNode* s, TreeNode* t) {
if(s == nullptr && t == nullptr) return true;
if(s == nullptr || t == nullptr) return false;
return helper(s,t) || isSubtree(s->left, t) || isSubtree(s->right, t);
}
bool helper(TreeNode* root, TreeNode* t) {
if(root == nullptr && t == nullptr) return true;
if(root == nullptr || t == nullptr) return false;
if(root->val != t->val) return false;
return helper(root->left,t->left) && helper(root->right, t->right);
}
Merge Two Binary Trees
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if(t1 == nullptr) return t2;
if(t2 == nullptr) return t1;
t1->val += t2->val;
t1->left = mergeTrees(t1->left,t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;
}
Maximum Binary Tree
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
return helper(nums, 0, nums.size() - 1);
}
TreeNode* helper(vector<int>& nums, int left, int right) {
if(left > right) return nullptr;
int mindex = left;
for(int i = left; i <= right; i++) {
if(nums[i] > nums[mindex])mindex = i;
}
TreeNode* p = new TreeNode(nums[mindex]);
p->left = helper(nums, left, mindex - 1);
p->right = helper(nums, mindex + 1, right);
return p;
}
Maximum Width of Binary Tree
int widthOfBinaryTree(TreeNode* root) {
if(root == nullptr) return 0;
queue<TreeNode*> q;
q.push(root);
int maxVal = 1;
while(!q.empty()) {
int n = q.size();
maxVal = max(n, maxVal);
for(int i = 0; i < n; i++) {
TreeNode* t = q.front(); q.pop();
if(t == nullptr) continue;
q.push(t->left);
q.push(t->right);
}
}
return maxVal;
}